
J. Fluid Mech. (1994), vol. 276, pp. 273-305 
Copyright 0 1994 Cambridge University Press 

273 

Global stability of two-dimensional and 
axisymmetric Euler flows 

By P. A. DAVIDSON 
Department of Mechanical Engineering, Imperial College, London SW7 2BX, UK 

(Received 6 October 1993 and in revised form 1 1  March 1994) 

This paper is concerned with the stability of steady inviscid flows with closed 
streamlines. In increasing order of complexity we look at two-dimensional planar 
flows, poloidal ( r ,  z) flows, and swirling recirculating flows. In each case we examine the 
relationship between Arnol’d’s variational approach to stability, Moffatt’s magnetic 
relaxation technique, and a more recent relaxation procedure developed by Vallis et al. 
We start with two-dimensional (x,y)  flows. Here we show that Moffatt’s relaxation 
procedure will, under a wide range of circumstances, produce Euler flows which are 
stable. The physical reasons for this are discussed in the context of the well-known 
membrane analogy. We also show that there is a close relationship between Hamilton’s 
principle and magnetic relaxation. Next, we examine poloidal flows. Here we find that, 
by and large, our planar results also hold true for axisymmetric flows. In particular, 
magnetic relaxation once again provides stable Euler flows. Finally, we consider 
swirling recirculating flows. It transpires that the introduction of swirl has a profound 
effect on stability. In particular, the flows produced by magnetic relaxation are no 
longer stable. Indeed, we show that all swirling recirculating Euler flows are potentially 
unstable to the extent that they fail to satisfy Arnol’d’s stability criterion. This is, 
perhaps, not surprising, as all swirling recirculating flows include regions where the 
angular momentum decreases with radius and we would intuitively expect such flows 
to be prone to a centrifugal instability. The paper concludes with a discussion of 
marginally unstable modes in swirling flows. In particular, we examine the extent to 
which Rayleigh’s original ideas on stability may be generalized, through the use of the 
Routhian, to include flows with a non-zero recirculation. 

1. Introduction 
We are interested here in the stability of steady incompressible inviscid flows (Euler 

flows). In particular, we make use of the variational techniques of Arnol’d (1966a) and 
of Moffatt (1985, 1986, 1990). Arnol’d’s well-known stability theorem provides a 
sufficient criterion for an inviscid flow to be stable. It establishes stability by advecting 
the vortex lines of the Euler flow by a virtual displacement field, q(x), which satisfies 
V - q  = 0, and q.ds = 0 on the boundary. Arnol’d showed that, when the velocity field 
u is a steady state, the kinetic energy, E, of the flow has a stationary value, 6’E = 0. 
Moreover, if this stationary value is either a maximum or a minimum, then the flow 
is linearly stable. That is, a sufficient condition for stability is that a2E be of definite sign 
for all possible displacement fields q. Note that failure to satisfy Arnol’d’s criterion 
does not imply instability, but merely ‘potential instability’. 

Arnol’d was also aware of magnetic relaxation as a vehicle for providing information 
about Euler flows. However, this technique has been developed most notably by 
Moffatt (1985, 1986, 1990). Consider a viscous perfectly conducting fluid which 
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initially contains a magnetic field B(x) or arbitrary structure. (We merely require that 
B-ds  = 0 on the boundary.) In general the Lorentz force (V x B) x B will be rotational 
and so induce motion. It is not difficult to show that, as long as u =l= 0, the total energy 
of the system decreases monotonically due to viscous dissipation. However, since the 
fluid is perfectly conducting, B is smoothly advected by the velocity field, and so retains 
its topological structure. In many cases this structure is sufficient to ensure that the 
magnetic energy cannot tend to zero (Moffatt 1985), and so the end result of this 
‘relaxation’ process is a magnetostatic equilibrium, with u(x) = 0 and the final B-field 
retaining the same topological structure as the initial B-field. We now note that there 
is a well-known analogy between the magnetostatic equilibrium 

O=jxB-Vp,  j = V x B  (1.1) 

O=UXCD-VH,  W = V X U .  (1.2) 

and the Euler equations for steady flow 

Here H is Bernoulli’s constant (plp + fu’), j is the current density and p is the pressure. 
(We have taken the permeability, po, to be equal to unity for convenience.) The analogy 
is between the variables 

B w u ,  j t t m  and p w - H .  

Thus, magnetic relaxation provides an Euler flow whose streamlines have the same 
topology as the initial magnetic field. This not only allows one to infer the existence of 
Euler flows under a variety of conditions, but also provides an algorithm for 
computing such flows. 

Unfortunately, as pointed out by Moffatt (1985), the Euler flows produced by this 
procedure are not, in general, stable. The reason is that perturbations about the steady 
state are governed, in the case of an Euler flow, by advection of the d i n e s ,  whereas 
the magnetostatic equilibrium was approached by advection of the B-lines (which 
correspond to u-lines in the analogy). Indeed, Moffatt (1990) gives simple examples of 
unstable Euler flows produced by this procedure, and in particular shows that a 
common feature of magnetic relaxation is the formation of current sheets, 
corresponding to unstable vortex sheets in the B t t  u analogy. 

This difficulty has been resolved, to some degree, by Vallis, Carnevale & Young 
(1989) who developed an elegant relaxation procedure which combines elements of 
both Arnol’d’s stability criteria and magnetic relaxation. They introduced a form of 
‘modified dynamics’, described by 

a m p  = v x (u* x 01, 
U* = + A aulat, 

where h is a constant or a function of time. Here we may think of u* as a continuously 
evolving form of Arnol’d’s displacement field which is functionally related to the 
instantaneous velocity, u. These equations have a number of interesting properties. 
First, the vorticity is smoothly advected by u”. It follows that all the normal invariants 
of the velocity field, such as circulation and helicity, are conserved. Secondly, the 
energy of the flow monotonically decreases or increases according to, 

Thirdly, the change in energy ceases only when the flow reaches a steady state, and in 
this case the modified dynamics revert to the conventional Euler equations. It is always 
possible that the modified dynamics will produce the trivial results E = 0 or E+ co. 
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However, if it does converge to a solution with finite energy, then in general this will 
be either a local minimum or maximum in energy and so the resulting flow will be 
stable by Arnol’d’s criterion. This technique is particularly powerful for two- 
dimensional flows since E is bounded from above when the vorticity is conserved (see 
Vallis et al. 1989) and so the scheme is guaranteed to produce a non-trivial result when 
h < 0. However, in three dimensions, one cannot, in general, place bounds on the 
kinetic energy. (One important exception will be described later.) Moreover, some 
researchers have suggested that the Euler equations can produce finite- time singularities 
and, if this is so, it would be surprising if the modified dynamics did not. We may 
regard, therefore, the relaxation procedures of Moffatt and Vallis et al. as 
complementary, each with its own advantages and limitations. 

In this paper we look at the relationship between Moffatt’s relaxation procedure, 
Arnol’d’s stability theorem, and the modified dynamics of Vallis et al. In particular, we 
use the results of Mestel (1989) to bridge the gap between these concepts. The 
discussion is restricted to two-dimensional and axisymmetric flows, including planar 
flows, axisymmetric flows without swirl, and finally axisymmetric flows with swirl. In 
all cases, the motion is restricted to a simply connected domain V bounded by a surface 
S .  

The plan of the paper is as follows. We start with two-dimensional flows in the (x,y)- 
plane. Here we consider steady flows in which the vorticity is smoothly distributed 
throughout V and is non-zero at every point. This excludes, for example, isolated 
vortex patches and flows containing vortex sheets. In $ 3  we show that, rather 
surprisingly, magnetic relaxation does indeed produce Euler flows which are stable to 
two-dimensional disturbances. The physical reasons for this are discussed in $4 using 
the well-known membrane analogy. We also show, in $5 ,  that the extremal nature of 
the kinetic energy under a perturbation of the streamlines follows directly from 
Hamilton’s principle. 

Next, we extend the analysis to axisymmetric flows described using a cylindrical 
polar coordinate system ( r ,  0, z).  We start, in $7, with poloidal flows (axisymmetric 
flows without swirl). These exhibit essentially the same characteristics as planar flows. 
In particular, the stability results of $93-5 carry over with little modification. As 
before, magnetic relaxation generally provides a stable Euler flow, subject to certain 
restrictions. 

Finally, we consider flows where both the swirl, uo, and the poloidal recirculation 
(uT, 0, u,) are non-zero. It transpires that the introduction of swirl has a profound effect 
on the stability analysis. In fact, all such flows are potentially unstable, to the extent 
that they fail to meet Arnol’d’s criterion. We illustrate this with two particular 
examples. The fact that swirling recirculating flows are potentially unstable is, perhaps, 
not surprising. They inevitably contain regions where the angular momentum 
decreases with radius, and intuitively one would expect such flows to be prone to a 
Rayleigh-like centrifugal instability. The extent to which Rayleigh’s original ideas on 
stability can be generalized to encompass recirculating flows is also discussed. 

It is convenient to introduced some elementary concepts and notation at this point. 
In two-dimensional flows we define the streamfunction via u = V x ($&). The steady 
Euler equation (1.2) then reduces to the statement w = -I?‘($), and so the steady state 
is governed by the equation 

When the flow is unsteady, w is no longer constant along each streamline, but in two- 
dimensional flows it is an advected quantity, in the sense that 

DwlDt = 0. 

(1.3) V2$ = -w($ )  = H’($). 
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It follows that we have a class of integral invariants of the form 

wherefis an arbitrary function of w ,  and V, is any material volume enclosed by the 
surface w = constant. The simplest invariant is V, itself, which has been termed the 
signature function (see Moffatt 1990). This plays a central role in any isovertical 
relaxation process, such as that of Vallis et al., since conservation of V, restricts the 
potential outcome of the relaxation. Note that, in two dimensions, conservation of 
vorticity places an upper bound on the kinetic energy of the flow. In particular, if A, 
is the lowest eigenvalue of 

Vz$+A$=O,  $ = O  on S 

then we have the Poincark inequality (see Vallis et al. 1989) 

This ensures non-trivial results from the modified dynamics of Vallis et al. in two 
dimensions. 

Finally, we shall find it convenient to introduce the idea of recirculation time for 
steady two-dimensional flows. Let r($) be the time it takes a fluid particle to pass once 
around the streamline C,. That is, if 1 is the distance measured along C, from some 
datum, 

In fact, T($ )  is simply related to the volume enclosed by C,. To see why this is so, 
consider a streamtube bounded by the two streamlines $ and $+6@. Let 6n be the 
separation of the two streamlines. Then the volume enclosed by the streamtube is 

r 

where V+ is the volume enclosed by C,. If we now recall that IuI = ]V$l = ti$/&, this 
reduces to 

(1.7) 

We shall find this relationship particularly useful when applying Hamilton’s principle 
to magnetic relaxation. First, however, we shall review Arnol’d’s stability theorem. 

T($)  = - d V,/d$. 

2. A review of Arnol’d’s stability criterion 
As a prelude to investigating the stability of two-dimensional flows it is convenient 

to review Arnol’d’s stability theorem. We shall give here only the briefest of accounts. 
More details may be found in Arnol’d (1966a), Moffatt (1986) and Mestel (1989). 

Our starting point is to introduce the idea of a virtual displacement of an Euler flow. 
This is discussed in detail in Moffatt (1986). However, it is worth reviewing this concept 
here. Virtual displacements are familiar from conventional Lagrangian dynamics as 
perturbations of the generalized coordinates of a mechanical system. Such per- 
turbations are quite arbitrary, except to the extent that they must satisfy all the system 
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constraints. Of course, the application of a virtual displacement does not imply that, 
through the action of some perturbing force, the system actually moves to a new 
configuration. Such displacements are merely a device for exploring (potential) 
instantaneous system configurations ‘ adjacent’ to the true system configuration. 

In the context of a steady Euler flow, u(x), we need to introduce a continuous virtual 
displacement field. The constraint which this field must observe is conservation of 
volume (Lanczos 1970). This may be enforced by supposing that the displacement 
occurs through the action of a solenoidal velocity field, u(x), applied for a short time 
7.  Let c(x) be the displacement of a fluid particle initially at x, and q(x) be defined by 
q = u7. To first order, 5 and q are equal. At second order curvature of the u-lines is 
important, and (see Moffatt 1986) 

c = q++q47vy+0(73). 

In line with previous investigators, we shall refer to q as a ‘kinetically admissible’ 
virtual displacement field (although q is strictly only the displacement to first order). 
By definition, 

V.vy=O, q - d S = O  on S.  

Now in Arnol’d’s theorem we explore system configurations (i.e. velocity fields) 
adjacent to the steady Euler flow u(x). However, these perturbed configurations are of 
a particular type. They must all have the same vortex-line topology as the initial Euler 
flow. In the terminology of Vallis et al. (1989), our perturbations are restricted to an 
isovortical sheet in phase space. The rationale for this is as follows. The Euler equations 
describe flow in an infinite-dimensional phase space. This space consists of subdomains 
(isovortical sheets) on which the vorticity configurations can be mapped one to 
another by a smooth displacement of the vortex lines. An unsteady Euler flow is 
constrained to follow a constant-energy contour on just such an isovortical sheet. Now 
steady Euler flows represent stationary points on these sheets, at which 6lE = 0. If this 
point is also an extremum in energy, so that the constant-energy contours are locally 
elliptic, then it seems plausible that the flow is stable, in that an isovortically perturbed 
flow will subsequently evolve on a constant-energy contour which always lies close to 
the stationary point. However, if the equilibrium represents a saddle point on the sheet, 
then adjacent energy contours can diverge, so that an isovortically perturbed flow is no 
longer constrained to stay close to the initial equilibrium position. Arnol’d therefore 
associated stability with extremums in E under an isovortical perturbation. 

An isovortical perturbation can be achieved by applying our virtual displacement 
field, q, to the vortex lines of the steady Euler flow. That is, we consider the vortex lines 
to be advected by an arbitrary solenoidal velocity field u for a short time 7.  Note 
however, that we are not implying that the flow actually moves from one state to the 
other, say under the action of some force. Note also that any of these adjacent 
(perturbed) velocity fields could be taken as an initial condition for a new unsteady 
flow. To that extent, we may consider that we have created a new pressure field during 
the virtual displacement. This new pressure is determined by the divergence of the 
unsteady Euler equation. However, we shall have no particular need to calculate this 
perturbed pressure. 

In subsequent sections we shall find it useful to perturb Euler flows in other ways. 
For example, rather than explore adjacent system configurations on the same 
isovortical sheet, we shall consider adjacent solenoidal velocity fields obtained by 
displacing the u-lines. Although not relevant to Arnol’d’s theorem, this second type of 
perturbation is useful in discussing magnetic relaxation. To keep the arguments 
general, therefore, we start by applying q to an arbitrary scalar or vector field. In 
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practice, this field may be u, $, o or, as we shall see, angular momentum. Scalar fields 
f ( x )  which are advected by are perturbed according to 

af/at = - v - v f ,  0 G t G r, 

from which the first-order perturbation in f is 

6’f= -p.VJ (2.1) 

6y-= - ;p .V(s l f ) .  (2.2) 

Substituting this expression back into the advection equation and reintegrating gives 
the second-order perturbation 

We shall return to these expressions later. Vector fields A(x)  which are advected by v 
obey the ‘ frozen-field’ equation, 

aA/at = v x (v  x A )  

and so the first- and second-order perturbations in A are 

6lA = v x (q x A) ,  

a2A = ;v x ( p  x 61A). 

We shall talk about vortex lines being perturbed, in which case A = o, or else 
streamlines being perturbed, in which case A = u. (We shall delay our discussion of 
perturbing the u-lines to the section on magnetic relaxation.) In Arnol’d’s theory we 
apply a virtual displacement field to the vortex lines and examine the consequent 
change in kinetic energy. Thus, 

6 1 0 = V x ( p x o ) ,  6 1 u = p x o + v q 5 1 ,  

6 2 0  = $7 x ( p  x 6 b ) ,  6% = ;p x 6lO + V$h2, 

where q51 and 9, are chosen to ensure 6lu and 6% are solenoidal. The first-order change 
in E is 

6lE = J u-GludV 

and it is readily confirmed that 6lE vanishes when u is a steady velocity field. The 
second-order perturbation in E is 

V 

6 - [$ (61~)2+~ .62~]dV,  
2E - 1” 

which may be rewritten in the more useful form 

ij2E = ~ ~ v [ ( 6 1 u ) 2 + p . ( 6 1 w x  u)]dV. 

Arnol’d’s theory then says that the Euler flow is stable if 6’E is positive definite or 
negative definite; that is, E is a maximum or a minimum for the Euler flow. Flows 
which fail to satisfy Arnol’d’s criterion are not necessarily unstable, so following 
Mestel (1989) we describe these as merely ‘potentially unstable’. In fact, we shall give 
an example of a stable flow which fails to satisfy Arnol’d’s criterion in the next section. 

We now restrict ourselves to flows and perturbations which are two-dimensional. 
The first-order perturbation in vorticity is then given by (2.1), 

6 l W  =-p*vo = -w’($)p.V$ (2.6) 
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so (2.5) simplifies to 

6’E = ;Jv [ ( 6 l ~ ) ~  -w’($)  (q*V$)’] dV. 

Next, we introduce an important restriction. We shall assume that w’($) is non-zero 
everywhere in V. This implies that we are excluding vortex patches where w is zero over 
finite regions of the flow field. In this case we have 

(2.7) 

where q5 is the first-order perturbation of the streamfunction, ti1$. Expression (2.7) is 
the most useful form for 6’E in two-dimensional problems. Clearly, when w’($) < 0, 
the corresponding Euler flow is stable and represents a minimum in E. When w’($) > 0 
the two terms in (2.7) are of opposite sign with the second term dominant for 
perturbations with a short lengthscale. Consequently, to ensure stability of flows with 
w‘($) > 0 we must demonstrate that 6’E -= 0 for all 6. The Euler flow then represents 
a maximum in energy. Given w($), we may locate the maximum value of iS2E using the 
calculus of variations (see, for example, Williams 1980). The simplest approach is to 
normalize 6’E by dividing by t J  (Vq5)’ dV and look for the minimum of the ratio. The 
resulting eigenvalue problem then gives (see Mestel 1989) 

where A, is the minimum eigenvalue of 

VZq5+Aw’($)q5=0, $ = O  on S.  (2.9) 
Consequently, as Mestel (1989) noted, the two-dimensional stability of two- 
dimensional flows is guaranteed if either w‘($)  < 0, or else w’($) > 0 and the minimum 
eigenvalue of (2.9) is greater than unity. If w’($) changes sign in V then 6’E may be 
made positive or negative by choosing q5 to be highly localized and applied in a region 
where w’($) has the appropriate sign. Consequently, flows in which w’($) changes sign 
invariably fail to meet Arnol’d’s stability criterion. 

We conclude this review of Arnol’d’s analysis by noting that (2.7) may be derived by 
a more direct route if we restrict ourselves to two-dimensional flows from the outset. 
Following Arnol’d (19663) we introduce the functional 

(2.10) 

where Y is the streamfunction of an unsteady flow, D is the vorticity, D = -V2Y, and 
$o(w) is the inverse function of w($),  the vorticity distribution of some steady Euler 
flow. (Note that, in order to define $o(w), we require w’($) =k 0 which is consistent with 
our previous restriction on w.)  By virtue of (1.4), and of conservation of energy, the 
functional A is a conserved quantity. Now suppose Y is close to $, Y = $+#. Then 
we may show that A is stationary when ‘Y = $ and that the second-order perturbation 
in A is 

(2.1 1) 6’A = gv [(V#)’- (v2#)2/w’($)l dV, 

which is the same as our expression for 6’E. However, A is conserved by an inviscid 
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flow and so, in the linear approximation, 6'A is also conserved. If the flow is to be 
unstable, then j (V$)' d V must become large while 6'A remains constant. Conversely, 
provided we can bound F2A away from zero, for a constant (V$)2 dV, the flow must 
remain stable. Consequently, a sufficient condition for formal stability is that is 
positive definite or negative definite, which is precisely the same as the previous 
criterion. 

3. Two-dimensional Euler flows produced by magnetic relaxation 
We now compare Arnol'd's stability criterion with the process of magnetic 

relaxation. It is well known that the magnetic energy of a magnetostatic equilibrium is 
stationary with respect to perturbations of the B-lines (see, for example, Moffatt 1990). 
In addition, the equilibrium is stable if the energy is minimal. The physical nature of 
magnetic relaxation suggests that, in general, it will produce B-fields in which the 
energy is indeed a minimum, and so these solutions must be stable. Now consider the 
corresponding Euler flows. We expect that, from the exact analogy between B and u, 
flows produced by magnetic relaxation will have a kinetic energy which is stationary 
(and indeed minimal) with respect to a perturbation of the u-lines. 

Now perturbating the u-lines of an Euler flow may seem somewhat unphysical, since 
it is the vortex lines which are advected in the unsteady Euler equations. Some careful 
explanation is therefore required at this point. Let B, be a magnetostatic equilibrium 
formed by magnetic relaxation, and u, be the equivalent Euler flow. The analogy 
between u and B holds only at equilibrium, and not for the perturbed states adjacent 
to B, and u,. However, magnetic relaxation tells us that if, by advecting the B-lines, we 
explore all the topologically equivalent solenoidal B-fields adjacent to B,, then we 
should find that the magnetic energy is minimal at equilibrium. Now, by perturbing the 
u-lines of the Euler flow, uo, we are merely finding the solenoidal velocity fields identical 
to the perturbed B-fields. It follows that the kinetic energy of the Euler flow will be 
minimal under this (unphysical) perturbation. 

Clearly, no particular physical significance should be attached to the process of 
perturbing the u-lines. In particular, the perturbed velocity fields need not be 
'dynamically accessible ' from the equilibrium velocity field. Curiously, however, it 
turns out that this perturbation does have a meaningful interpretation in the 
framework of Lagrangian dynamics, in terms of perturbing individual particle 
trajectories. This is discussed in $6. 

Let us now focus on two-dimensional Euler flows. Applying a virtual displacement 
to the u-lines in two dimensions is equivalent to advecting $, the streamfunction. From 
(2.1) and (2.2) we have, 

d ' ~  = - q *  V$, (3.1) 

d2$ = -~~-V(d '$) ,  ( 3 4  

where q is our virtual displacement field, $ is the streamfunction of the steady Euler 
flow, and we use the symbol d rather than 6 to distinguish between advection of the u- 
lines and advection of the d i n e s .  The first-order perturbation in E is then 

d'E = V$.V(d'$)dV. J" 
However, if we note that 

V$.V(d'$) = V-[dl$V$++H] 
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it is clear that d’E = 0, as expected. The second-order perturbation in E is 

d2E = lV [ ( ~ ( d l $ ) ) ~  + 2V$. V(d2$)] d V 

If we now substitute for d2$ in terms of dl$, and invoke the divergence theorem, we 
obtain 

d2E = ;lv [(V$)2-w(q-V$)] dV, 

where, for brevity, we write $ = d’$. However, since w is a function of $ alone, we 
have 

from which we obtain a simpler expression for d2E: 

w ( r .  0 4 )  = v * ($w) + $2w’($) 

[(V$)2-~‘($)$2]dV (3 .3)  

At this point we might note that we have implicitly assumed that w’($) is finite 
everywhere, and so we are excluding flows which contain vortex sheets. Now we know 
that magnetic relaxation will, in general, give Euler flows in which d2E is positive 
definite. Let us consider which vorticity distributions are compatible with this. Clearly, 
Euler flows with w’($) < 0 guarantee d2E > 0. If d($) > 0 then the situation is more 
complicated. Here we require d2E to be bounded from below by a positive number. 
This again leads us to a variational problem. Consider the functional 

~“(V$)2-f$21 dV 

-J[w$2ldV 2 
, $ = O  on S, (3 .44  

2 
I($) = 1 

where f and w are arbitrary functions (except that w > 0). We know (see, for example, 
Williams 1980) that I has a minimum value when $ is the eigenfunction corresponding 
to the least eigenvalue, A, of 

V2q!+f$+hw$=0, $ = O  on S. (3.4b) 

The minimum value of I is A,, the smallest eigenvalue of (3.46). Now suppose that we 
normalize d2E by dividing it by a j~’ ($)q5~dV (for w’($) > 0). It follows from (3 .44  
and (3.4b) that d2E is positive definite if the least eigenvalue of 

V2$+(1 +h)w’($)$ = 0, q! = 0 on S (3.5) 
is greater than zero. However, this is precisely the same eigenvalue problem as (2.9), 
which is the condition required to ensure ?j2E is always negative (for w’($) > 0). In 
summary then, if w’($) < 0, both ?j2E and d2E are positive definite. When o’($) > 0, 
however, then either both S2E and d2E are indefinite in sign, or else 2i2E is negative 
definite and d2E is positive definite. It follows that the two-dimensional Euler flows 
produced by magnetic relaxation, which in general satisfy d2E > 0, also satisfy 
Arnol’d’s criterion, and so are stable to two-dimensional perturbations. 

At this point it is, perhaps, worth summarizing the restrictions we have placed on 
w($).  For the above statements to hold true we require: 

(a) w’($) += 0 (no vortex patches); 
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(b) w’(+) finite (no vortex sheets); 
(c) o’(+) does not change sign. 

When these conditions are satisfied, we may take the positive definiteness of d2E as a 
sufficient condition for stability. Mestel (1989) has previously noted that the integral in 
(3.3) provided an alternative formulation of Arnol’d’s criterion, and that its simple 
familiar form lends itself to developing more detailed stability theorems. Mestel was 
not concerned with magnetic relaxation, however, but rather identified 

J =  Jv[(v$)2-ur’(+)$21dV 

as the second variation of the functional 

which is stationary when !P = +, the streamfunction of an Euler flow. This functional 
bears an interesting resemblance to Arnol’d’s functional (2. lo), but is not a conserved 
quantity, unlike A( Y). 

Now our claim that Euler flows produced by magnetic relaxation are stable is in 
marked contrast to Moffatt’s (1990) counter examples. Moffatt gave several instances 
of unstable Euler flows produced by relaxation. Some of Moffatt’s examples are 
axisymmetric and contain swirl, and we shall return to these flows later. However, the 
two-dimensional examples given by Moffatt do appear to contradict our main 
conclusion. But these flows involved the formation of vortex sheets from saddle points 
in the initial B-field, and we have already noted that our analysis is not valid in such 
cases. There is, therefore, no conflict between our analysis and that of Moffatt. 

If we choose to normalize d2E in a different way we may derive an alternative 
eigenvalue problem to (3.5). Dividing d2E by $ j  $‘dV, and applying ( 3 . 4 ~ )  and (3.4b), 
tells us that d2E is positive definite provided 

V 2 $ + d ( $ ) $ + A $ = 0 ,  $ = O  on S (3.7) 

produces positive eigenvalues. This formulation has two advantages over (3.5). First, 
it provides a single test for the sign of d2E, both for d(+) > 0 and d(+) < 0. Secondly, 
it has a familiar form which appears in a variety of other physical problems, as we shall 
see later. 

Let us now illustrate some of these observations using a very simple example. 
Suppose the boundary, S,  is the circle r = R. Then (1.3) demands that the flow be of 
the form u = u&r) g8 (using polar coordinates). Suppose we narrow the choice of u and 
specify w’(+) = a2. Then, in terms of Bessel functions, (1.3) gives 

= CIJ,,(ar)--Jo(aR)], uo = aCJ,(ar), w = a’CJ,,(ar), 

where C is an arbitrary amplitude. From (2.7), advection of the vortex lines perturbs 
E according to 

6’E = lv [(V$)’ - (V2$)2/a2]  d V. 

This is bounded above by 

62Em,, = (1 -A,*) - (V$)’ d V, J” 
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where A,* is the minimum eigenvalue of (2.9), 

V2$+A*a2$=0,  $ = O  on r =  R. 
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The least eigenvalue of this equation corresponds to a symmetric mode, independent 
of 0, and gives a2A,* = (6,/R)2, where 6, is the first zero of J,(x). It follows that our flow 
satisfies Arnol’d’s criterion, and so is stable, provided we choose a such that 

aR < 6,. (3.8) 
This Euler flow could be produced by the modified dynamics of Vallis et al. provided 
the initial signature function, which is preserved during the relaxation, is the same as 
that of the final steady state, 

rt v, = -[J-l( , u/a2C)]? 
a2 

Alternatively, from (3.3), advection of the $-lines gives 

d2E = - [(Vq4)2 - d V, s, 
where d2E is bounded from below by 

Here A, is the minimum eigenvalue of (3.7), 

V 2 $ + ( a 2 + A ) $ = 0 ,  $ = O  on r =  R 

so that d2E is positive definite if a satisfies aR < 6,. This is the same condition as (3.8), 
the requirement for the flow to satisfy Arnol’d’s criterion. Thus, stable circular flows 
can be produced by magnetic relaxation provided the original signature function of the 
B-field matches that of the final flow. (Here the signature function is the volume 
enclosed by a $-line, rather than an d i n e ,  since it is the ~- l ines  which are advected 
during magnetic relaxation.) 

Interestingly, we may also apply Rayleigh’s inflexion-point theorem to this simple 
flow. This states that a sufficient condition for stability of the flow to two-dimensional 
disturbances is that dwldr does not change sign. However, 

dwldr = - uo w’($) = - a2u8 

so this is satisfied provided a is chosen such that 

aR < a,, 
where 6, is the first zero of J,(x).  This illustrates the danger of inferring instability from 
a failure to satisfy Arnol’d’s criterion. Flows in the range 6, c aR c 6, are stable by 
Rayleigh’s theorem, yet ij2E is of indefinite sign and so these flows are potentially 
unstable by Amol’d’s criterion. 

Finally, note that we may obtain a closely related flow by setting d($) = -a2. In 
this case (1.3) gives 

$ = C[I,(aR)-I,(ar)], uo = aCI,(ar), w = a2CI,,(ar), 

where I, and Il are modified Bessel functions. Here Rayleigh’s inflexion-point theorem 
states that the flow is always stable, as u,w’($) does not change sign. This coincides 
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with Arnol’d’s criterion which is satisfied since 6’E is positive definite. In addition, such 
flows may be produced by magnetic relaxation, for any a, since d2E is always greater 
than zero. 

4. A qualitative explanation of why two-dimensional flows produced by 
magnetic relaxation are stable 

There is no obvious physical reason why flows produced by magnetic relaxation 
should be stable. On the contrary, there are several good reasons for believing they 
should, in general, be unstable. In this section, we shall give a simple physical 
interpretation of the rather formal analysis of $3.  First, however, let us consider the 
counter examples given by Moffatt (1985, 1990). 

Suppose we have two thin circular co-axial magnetic flux tubes, one at radius r = rl 
and the other at radius r ,  = r ,+6r .  Let the two tubes have the same volume V, but 
different magnetic fluxes, and cP2. The magnetic energy, M ,  contained in the tubes 
is 

Now suppose that the flux tubes exchange radial position as a result of an axisymmetric 
perturbation of the ‘ frozen-field’ type. During this exchange the magnetic fluxes and 
volumes of each tube are conserved, so the change in energy is readily shown to be 

Clearly, fields of the form (0, BB(r), 0) are stable to axisymmetric perturbations only 
when &/rl is a decreasing function of r.  This is the familiar interchange instability, and 
represents the fact that parallel current filaments pinch in on themselves, so that a 
magnetic flux tube can release energy by contracting. 

Now compare this with Rayleigh’s circulation criterion. Suppose that we have two 
thin circular hoops of swirling fluid. If these exchange position, while conserving 
volume and angular momentum, then an analysis similar to that above (see, for 
example, Drazin & Reid 1981) gives 

V d P  
r3 dr 

6’E = --(6r)’, r= uBr.  

This is the basis of Rayleigh’s circulation criterion for swirling flows subjected to 
axisymmetric perturbations. For E to be minimal, and the flow to be stable, we require 
that the angular momentum, r, is an increasing function of radius. This is a 
manifestation of the fact that swirling hoops of fluid can release energy by centrifuging 
themselves radially outward. We shall see later that a virtual displacement of the 
vortex lines, in the spirit of Arnol’d or the modified dynamics of Vallis et al., conserves 
angular momentum, and so expression (4.2) could also be derived from Arnol’d’s 
criterion. 

Clearly, the swirling flows (0, ue(r), 0) produced by (axisymmetric) magnetic 
relaxation will exhibit the characteristic that u,/r decreases with radius. Moreover, 
these Euler flows are, by Rayleigh’s circulation theorem, unstable to axisymmetric 
disturbances. This is one of the simplest counter examples given by Moffatt (1985). It 
seems probable, therefore, that the stability of the flows discussed in $3  is particular to 
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two dimensions. It is only natural to inquire what special feature of two-dimensional 
flows allows this to happen. 

It is tempting to ascribed the correspondence between magnetic relaxation and 
Arnol’d’s stability criterion to some particular feature of the two dimensional 
evolution equation for unstable modes. Perhaps, for example, advecting w is somehow 
equivalent to advecting $. However, it is readily demonstrated that this cannot be true. 
If $ is the perturbation in the streamfunction, then the perturbed equation of motion 
is 

a 
-(V”) + U*V(V2$ + w’($) 4) = 0. 
at 

This evolution equation cannot be transformed into an advection equation for $, and 
so this does not account for our stability results. This becomes evident if we note that 
the evolution equation above conserves vorticity, while (3.1) does not. That is, 

gives 

from which 

dl$ = -q.V$, q = V x (dZ) 

d’u = (V2$) Vs-(V2€) V$+ V(Vs.V$)-2(Ve).V(V$) 

IVd1wdV = -2 [(Vs).V(V$)].dZ. 

This is not, in general, zero, so global vorticity is not conserved under advection of the 
$-lines. Consequently, we must find a different explanation for the results of 8 3. In fact, 
it is the two-dimensional signature function which is the key. This is most readily 
explained using the well-known analogy between a loaded membrane and two- 
dimensional flow. 

Consider a membrane which is supported along a boundary S and subjected to a 
load per unit area of P(x,y). Let T be the membrane tension and x be its equilibrium 
displacement. We shall assume that the loading P is applied in such a way that it is 
constant along a displacement contour, P = P(x). If we normalize P by introducing 
p ( x )  = P(x)/T,  then the equation of equilibrium for the membrane is 

L 

V2x = -p(x) ,  x = 0 on S.  (4.3) 
Now consider vibration of the membrane about its equilibrium position. It we let 
$cos(st) be the perturbation in displacement, then the equation of motion for the 
membrane is 

where p is the density per unit area of the membrane. Now compare these expressions 
with (1.3) and (3.7). Clearly, there is an exact analogy with two-dimensional Euler 
flows, with $-x and p w w .  In fact, the analogy carries beyond the equilibrium 
displacement, stability of the membrane corresponding exactly to Arnol’d’s stability 
criterion. Incidentally, we are now able to attribute physical significance to Arnol’d’s 
and Mestel’s functionals A( u) and M( u). The total energy of the membrane, including 
the stored elastic energy and the potential energy of the load is 

V2$ +p’(x) 4 +A# = 0, h = p2/ T, (4.4) 

V(x) = TS[t(oX)’-~p(x)dX]dA. (4.5) 

This is, in effect, Mestel’s functional. The fact that Mestel’s functional is stationary at 
equilibrium, and a minimum for stability, corresponds to the theory of minimum 

10 F L M  276 
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potential energy in elastic systems (Sokolnikoff 1946). Arnol’d’s functional also has a 
counterpart in our analogy. The complementary energy of the membrane is defined as 
(see, for example, Richards 1977) 

which corresponds exactly to Arnol’d’s functional. Again, it is well known that elastic 
systems exhibit stationary complementary energy at equilibrium. Our analogy is 
therefore complete. 

Returning to the problem in hand, Arnol’d’s approach of perturbing the vortex lines 
corresponds to displacing the contours of constant load (p-lines) and examining the 
consequent change in strain energy. When w’($) > 0, Arnol’d’s stability criterion 
translates to a requirement that the strain energy is a maximum under a virtual 
displacement of the p-lines. Conversely, magnetic relaxation produces equilibria in 
which the strain energy is a minimum under a virtual displacement of the X-lines. 

We shall now restrict ourselves to the situation where w’($) is single signed. Consider 
first the process of relaxation via ‘modified dynamics’ in two dimensions. We shall 
assume that p is initially constant along S,  as this is required in the final steady state. 
When w’($) > 0, we wish to maximize the strain energy in the membrane by advecting 
the p-lines (moving the load). This is achieved by pulling the load as close to the centre 
of the membrane as possible. However, the signature function, V,, must be conserved 
during this process, so the best that can be achieved is that the loading centres itself in 
the membrane. That is, the p-lines become circular and concentric near the centre of 
the membrane, as shown in figure 1. (The shape of the p-lines may become modified 
as we move away from the centre by the need to conform to the boundary.) This is 
precisely what was observed in the numerical experiments of Vallis et al. (1989). 

Now consider the process of magnetic relaxation. In our membrane analogy we 
advect the membrane displacement in such a way as to minimize the stored strain 
energy, U. Consider the elastic energy stored between two X-lines, x and x + 6~ : 

6U = iTfx (VX)~ dA. 

Let 1 be the distance measured along the X-line and 6n be the separation of the two 
X-lines. Then IVxJ = 6X/Fn and 6A = d16n. Consequently, we can express the stored 
energy as 

Under magnetic relaxation, the area between x and x + 62 is conserved. Consequently, 
the strain energy is minimized if each X-line reduces its length, while keeping its 
enclosed area, A(x) ,  constant. This corresponds to magnetic flux tubes loosing energy 
by contraction (see Moffatt 1985; Linardatos 1993). Under magnetic relaxation, the 
X-lines (which correspond to p-lines in the final steady state) will tend to become 
concentric circles near the centre of the membrane, with their shape modified by the 
boundary as we move away from the centre. (See figure 1 b.) Again, this is what was 
observed in the analytical studies and numerical experiments of Linardatos (1 993). 

When viewed in terms of the membrane analogy the formal analysis of 93 seems less 
unreasonable. The key appears to be the constraint imposed by the signature functions. 
In both cases the p-lines or X-lines try to centre themselves in the membrane. This is 
quite different to the axisymmetric situation which led to (4.1) and (4.2). These rely on 
the existence of axisymmetric perturbations which can exchange the radial position of 
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Relaxation via advection 
of the vortex lines 

Magnetic relaxation 
> @ XI 

FIGURE 1. Membrane analogy for two-dimensional relaxation via the modified dynamics of Vallis et 
al. and magnetic relaxation. (a) The strain energy is maximized by letting the contours of constant 
load centre themselves in the membrane. (This corresponds to maximizing kinetic energy by advecting 
the vortex lines.) (b)  The strain energy is minimized by letting the contours of constant displacement 
centre themselves in the membrane. (This corresponds to minimizing kinetic energy by advecting the 
streamlines). 

two material hoops. This cannot happen in two dimensions. Here nested streamtubes 
or flux tubes must remain nested and, in particular, they cannot exchange position, but 
must remain nested in the same order (see figure 1). This is the key distinction between 
two-dimensional and three-dimensional perturbations. 

5. Magnetic relaxation and Hamilton’s principle 
We have seen that, under a virtual displacement of the u-lines, the kinetic energy of 

an Euler flow is stationary. However, we have taken a rather circuitous rout to this 
result, invoking an analogy with magnetohydrodynamics. Since we are dealing with a 
purely mechanical system, we might anticipate that there is a simpler, strictly 
mechanical explanation for this. It turns out that there is. The fact that E is stationary 
under an advection of the $-lines follows directly from Hamilton’s principle. 

The purpose of this section is two-fold. First, it attributes some significance to 
perturbing the u-lines (rather than the dines).  Secondly, we demonstrate that, from 
the point of view of stability, we can completely dispense with magnetic relaxation as 
an intermediary in our otherwise purely mechanical system. We shall see that, in the 
framework of Lagrangian dynamics, advecting the u-lines can be interpreted as 
perturbing individual particle trajectories, the extremal nature of E follows from 
Hamilton’s principle, and stability of the flow corresponds to the global action integral 
being a minimum. 

There are two ways in which we could apply Hamilton’s principle to our flow. We 
could consider the motion of individual fluid particles. Alternatively, we could take a 

10-2 
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global approach and examine the flow field as a whole. Consider first the local 
approach. There are different ways of stating Hamilton's principle applied to a single 
particle, but for our purpose the most useful is that given in Lamb (1932). Suppose a 
particle travels along a trajectory x,(t), from xo(t,) to xo(to), under the influence of a 
force, F. Now consider an adjacent trajectory, x(t )  = xo(t )+[( t ) .  Even though the 
particle does not follow this new path, we can still calculate the kinetic energy, T, which 
the particle would have if (somehow) it did. Let FIT be the first-order difference in 
kinetic energy between the two paths. Then Hamilton's principle gives us 

provided that the perturbed trajectory satisfies 

(If F is conservative, with potential V, then (5.1) reduces to the more familiar form 
FS(T- V)dt = 0.) Now suppose that x(t )  and x,(t) are both cyclic trajectories, in the 
sense that they form closed paths and that the particle velocity returns to its original 
value on completing the circuit. Then provided that the recirculation time, 7 = t ,  - t,, 
is the same for both the true and perturbed paths, condition (5.2) is satisfied and (5.1) 
follows. Let us now apply this result to a fluid particle moving around a closed 
streamline in a steady Euler flow. Hamilton's principle gives us 

$+ F1($pu2) dt = (Vp r> dt. 

We merely have to ensure that the recirculation time, r($), is the same for all perturbed 
paths. Now we can create just a set of perturbed trajectories by advecting the $-lines 
by the virtual displacement field q. Such an approach guarantees that 7($) is conserved 
since, from (1.7), 

where V+ is itself conserved. It is conservation of streamline topology which allows us 
to make this link. In $2 we saw that 5 and q are identical to first order. It follows that 

i 

.($I = -dV+/d$, 

Now consider a streamtube bounded by two adjacent streamlines, $ and $++$. 
Following the arguments used to derive (1.7), we have 

dt = dZ/lul = dlFn/16$1 = dA/16$.(, 

where 1 is the distance along the $-line and Fn is the separation of the two streamlines. 
Hence, multiplying (5.3) by S$ gives 

fg, W p u 2 )  dA = v - (Pd  dA, 
f+ 

where the integrals are evaluated over the area of the streamtube. If we now add all 
such contributions from individual streamtubes, we obtain 
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Consequently, we conclude that, by virtue of Hamilton's principle, the total kinetic 
energy is stationary under a volume-preserving displacement of the streamlines. 

An alternative and more direct way of reaching the same result is to apply 
Hamilton's principle to the entire flow field. In this case the pressure force becomes 
simply a force of constraint whose function is to maintain the non-holonomic 
constraint, V . 6  = 0 (Lanczos 1970). Now forces of constraint do no net work provided 
that the constraint which they impose is observed during the virtual displacement. We 
may, therefore, ignore the pressure forces in this global formulation. As there are no 
other applied forces, the Lagrangian of the flow is simply the volume integral of the 
kinetic energy : 

the global action integral is then 

L = ($pu2) d V = pE. s 
I = [:Ldt = [:pEdt. 

The system is monogenic and so we may apply Hamilton's principle directly to the 
global action integral. In particular, we perturb the system in configuration space by 
perturbing the particle trajectories with the displacement 6. Provided our virtual 
displacement satisfies V . 6  = 0, we know that P I =  0, demonstrating once again that 
E is stationary under a volume-preserving advection of the $-lines. 

Notice that, so far, we have said noting about stability. We have been concerned 
only with first-order perturbations. Now the arguments of $ 3  show that the flow is 
stable provided E is a minimum under advection of the $-lines. In terms of I ,  a two- 
dimensional Euler flow is two-dimensionally stable provided the global action integral 
is a minimum at equilibrium. Superficially, this seems plausible. It implies that if 
(somehow) we perturb the individual particle trajectories by applying a force F to each 
particle, then a stable flow requires that F perform a net amount of work on the fluid 
to shift it from its equilibrium configuration. Of course such an argument is rather ill- 
defined. Interestingly, however, there are many other examples of conservative 
mechanical systems which, in the absence of external forces (other than those of 
constraint) and of potential energy, exhibit a minimum kinetic energy at stable 
equilibrium. A particle moving on the inside surface of a sphere is one simple example. 
It is interesting to speculate whether or not this is a general principle. 

6. Swirling recirculating Euler flows 
In the remainder of this paper we shall extend our two-dimensional results to 

axisymmetric flows, with and without swirl. It is convenient, therefore, to introduce 
some new notation, and to summarize certain features of axisymmetric Euler flows. We 
shall adopt a cylindrical polar coordinate system (r,  8, z )  and separate the velocity and 
vorticity into azimuthal (0) and poloidal ( r ,  z )  components: 

u = up + uo = v x [ ( $ / I . )  41 + (T/r) &@. 

Here $ is the Stokes streamfunction and T is the angular momentum, uor. The 
streamfunction is related to the vorticity component, wo, by the Stokes operator VZ,, 
defined by 
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In unsteady flow the Euler equations reduce to transport equations for r and w o / r :  

DT/Dt = 0, (6.2) 

It is well known that (6.2) and (6.3) admit two classes of steady solution (Batchelor 
1967). The first is the swirl-only flow r = T(r), $ = 0. The second comes from rewriting 
(6.3) in the form 

D w fT’($) 
Dt r 
- ( 0  r 2 ) = o ,  

from which 
r = rw, (6.4) 

(6.5) V2 * $ = -rwo = -lT’($) +r’H’($). 

Equation (6.5) is the counterpart of (1.3) for axisymmetric flows. As before, H is 
Bernoulli’s constant. Given H($) and r($) we may solve (6.5) for $. For confined 
flows, however, we are restricted in the choice of H and T. For example, suppose we 
specify T = a$ and H’($) = 0. This is, in fact, a Beltrami flow, with w = au (Davidson 
1993). Then (6.5) gives the eigenvalue problem 

V2,$+a2$=0 ,  $ = O  on S, (6.6) 
which dictates the values of a, and hence r, which are compatible with the flow 
domain. We shall examine the stability of Beltrami flows in $8.  

As with two-dimensional flows, we shall find it useful when discussing Hamilton’s 
principle to introduce the recirculation time for a steady axisymmetric flow: 

This recirculation time is related to V@, the volume enclosed by the toroidal surface 
@ = constant, by the axisymmetric counterpart of (1.7), 

1 dV 
7($) = ---A. 

271: a$ 
We may also generalize the concept of integral invariants to swirling recirculating flow. 
Consider the toroidal volume, V,, defined as the volume enclosed by the surface 
r = constant. It is clear from (6.2) that V, is materially advected in an unsteady flow. 
We may then show (see Davidson 1993) that (6.2) and (6.3) imply the existence of a 
class of integral invariants of the form 

I = { 2 h ( r )  +f(r)} d V, 
vr 

where h and f are arbitrary functions of r. This invariant will prove useful in 
generalizing Arnol’d’s functional to include flows with swirl. Equation (6.9) also shows 
that we have two signature functions which characterize axisymmetric flows : 

v,= VAT) (6.10) 

and W =  Jvr(:)dV= W(r) .  (6.11) 
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We shall see that in certain relaxation schemes r is a materially advected quantity, and 
so the signature functions V, and W constrain the relaxation process in the same way 
that V, does in two-dimensional flows. 

So far we have assumed that r i s  non-zero. In the absence of swirl wo/r  is an advected 
quantity and we have only one signature function. This is V,, the toroidal volume 
enclosed by the surface w8/r  = constant. 

Finally, we might note that we can bound the kinetic energy of the flow, just as we 
did in two dimensions. This time, however, the results depend on whether or not swirl 
is present. Let us divide the energy E into azimuthal, E8, and poloidal, Ep,  components. 
If swirl is absent, conservation of w,/r implies that we may bound Ep from above, but 
not from below. The axisymmetric version of the Poincari inequality (1.5) is 

(6.12) 

where A, is the least eigenvalue of 

When swirl is present the situation is rather different. This time conservation of r 
implies that EB (and hence E )  is bounded from below, but not from above. We can, for 
example, produce an infinite kinetic energy by pulling a fluid element with finite r to 
the axis. The Schwarz inequality, however, bounds EB from below : 

(6.13) 

The equality holds if, and only if, ug = Or, where 52 is a constant. Thus rigid-body 
rotation represents a minimum-energy state (when r is conserved). This lower bound 
on E ensures that, in principle, the relaxation process of Vallis et al. converges to a flow 
of finite energy (see Davidson 1993). 

We shall now look at axisymmetric flow without swirl, essentially as a prelude to 
examining the more interesting case of swirling recirculating flows. 

7. Stability of poloidal flows 
We shall see that, when swirl is absent, our stability results for (x, y )  flows carry over 

to (r, z )  flows with little modification. In particular, magnetic relaxation provides stable 
Euler flows and thus an examination of changes in E under advection of the streamlines 
provides a simple test for stability. As in the preceding sections, we restrict ourselves 
to two-dimensional (Y, z )  disturbances. Consider first Arnol'd's criterion. Under 
advection of the vortex lines, 

6lw,/r = - q -  V(wo/r), 

62" 8 / r  = -1 zrt * V(6 We/  r )  3 

(7.1) 

(7.2) 

where p(r, z )  is our virtual displacement field. Now q will, in general, contain azimuthal, 
and poloidal, qp, components. However, & produces no change in o, and so, 

without loss of generality we may put qs = 0. Equation (2.5) then gives the perturbation 
in kinetic energy as 

0.' 

[ (61~ , )2 - (r t .V~) ( ( t l .V(~8 /~ ) ) ]  dV. 
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However, (6.5) tells us that w,/r = -H'($), so this integral simplifies to 

6'E = [(V$)' - (Vi  $)'/g] r-' d V. (7.3) ' s, 
Here $ is the first-order perturbation in the streamfunction, S'$, and 

There is a direct correspondence between this integral and its x,y analogue. The 
quantity g now plays the part of w'($). Note that we are assuming that g is non-zero 
everywhere in V, so we are excluding discrete vortex rings. Arnol'd's theorem now tells 
us that the flow is stable provided g < 0. Alternatively, when g > 0, we can bound 6'E 
from above (see Mestel 1989) by 

6'Em,, = (1 -A,) - (V$)'r-' d V, 
2 'I (7.5) 

where A, is the least eigenvalue of 

Consequently, as Mestel noted, stability of the flow is guaranteed if either g < 0, or else 
g > 0 and the minimum eigenvalue of (7.6) is greater than unity. This is directly 
analogous to our results for ( x , y )  flows. 

Note that, as with the planar flows, we could also reach the same conclusions by 
introducing a conserved functional, A ,  similar to (2.10), but with W @ / Y  replacing w.  In 
this case (7.3) appears as the second variation of the functional and stability follows if 
tj2A can be bounded away from zero. 

Now consider the Euler flows produced by magnetic relaxation. We start by 
perturbing the streamlines of the Euler flow, as occurs in the final stage of relaxation. 
This time, however, we cannot neglect qe, as it sweeps out an azimuthal component of 
velocity. Let 

Substituting u for A in (2.3) and (2.4) then gives 

V;$+gA$=O, $ = O  on S.  (7.6) 

r(r, 4 = To + t f p .  

The first two expressions above are to be expected, since $ is advected in this 
perturbation. The third term arises from twisting of the streamlines whenever q, does 
not represent rigid-body rotation. It is readily shown that d'E = 0, while the second 
variation in energy is 

d2Ep+d2E - -~v[(Vd'$)'+2V$~V(d'$)] 1 r-2dV+3/v 1 (d'u,)'dV. 
, - 2  

Noting that the second term in the integral for d2Ep may be expressed as 

the second variation in E simplifies to 

r-'Vljr-V(q,.V(dl$)) = V.[-d'$H'($)q+r-'q.V(d'$) V$]--H"(ljr) (dl$)' 

(7.10) 
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Here 4 is the first-order perturbation in the streamfunction (4 = d’$). Now we know 
that magnetic relaxation ensures d2E > 0, for all possible qp and q,. Since 4 depends 
only on qp, while d’u, depends only on q,, it follows that 

1 
d2E, = [(V+)2 -gq52] r-2 dV (7.11a) 

must be positive for all possible 4. This is directly analogous to (3.3) where, once again, 
g replaces o’($). As with the (x, y )  flows, Mestel (1989) noted that the conditions for 
the integral in (7.1 1 a) to be positive definite exactly coincide with the conditions for 
6’E to be of definite sign. The only restriction is that g does not change sign in V. In 
particular, if g > 0, 

i r  
d2Ep 2 (Ao- 1)- g$2r-2dV, ;J (7.11b) 

where A, is the minimum eigenvalue of (7.6). Mestel was not concerned with magnetic 
relaxation, but rather identified the integral in (7.11 a) as the second variation of the 
functional 

M*(!P) = [:r-2(VY)2+H(!P)]dV, 

which is stationary when !P = $, the streamfunction of an Euler flow. We conclude, 
therefore, that magnetic relaxation once again produces Euler flows which are two- 
dimensionally stable. The only restrictions are that g + 0 (no isolated vortex rings), g 
is finite (no vortex sheets), and g is single signed in V. 

The other stability results for (x, y )  flows also carry over more or less unchanged. 
The stationary nature of Ep under advection of the $-lines follows directly from 
Hamilton’s principle, stability of the flow corresponding to the action integral being a 
minimum. (This follows from (6.8) and conservation of the signature function V$.) In 
addition, the eigenvalue problem 

VZ,$+g++A4=0,  q5=0 on S (7.12) 

gives a simple test for the sign of d2Ep, for both g < 0 and g > 0. To ensure dzEp > 0, 
and hence stability of the Euler flow, we require positive eigenvalues of (7.12). 

Finally, there is an exact analogy between these results and a simple problem in the 
theory of elasticity. Consider a shaft of variable diameter, the edges of which are fixed. 
The shaft is placed in torsion by an azimuthal body force I;,. Let vo(r,z) be the 
displacement of the shaft and G be the shear modulus. Then the equilibrium equation 
for the shaft is (see Den Hartog 1952) 

J: 

(7.13) 

Let us define x as the product rv, and suppose that the loading is applied such that &/r 
is constant along X-contours. For example, 

Then our equilibrium equation becomes 

(7.14) 

If this equilibrium is disturbed then the subsequent vibration of the shaft about its 
equilibrium position is governed by 

VZ, $+g$+h$ = 0,  h = ps2/G, (7.15) 
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where $ is the perturbation in 2, s is the natural frequency of oscillation, g = r2f&), 
and p is the density. If we compare these expressions with (6.5) and (7.12) we see that 
there is an exact analogy with Euler flows in the (r,z)-plane. The correspondence is 
between the variables @ e x  and H ’ ( @ ) t t - f , .  The analogy holds not just for the 
equilibrium configurations, but also for stability of the two systems, stability of the 
shaft corresponding exactly to Arnol’d’s stability criterion. The total energy of the 
shaft, including the stored strain energy and the potential energy of the load, is 

This is exactly equivalent to Mestel’s functional M*( Y),  so that the requirement that 
M *  is a minimum for stable Euler flows corresponds to the theory of minimum 
potential energy for elastic systems. We may also show that, as for the membrane, 
Arnol’d’s functional for (Y, z )  flows corresponds to the complementary energy of the 
shaft, which is necessarily stationary at equilibrium. One advantage of this simple 
mechanical analogy is that it shows clearly the dependence of the kinetic energy of a 
flow on the positioning of the vorticity, and so allows one to visualize changes in E 
which occur during relaxation. In addition, we can avail ourselves of the extensive 
literature on the stability of elastic systems. We shall now generalize this analysis to 
include swirl. 

8. Arnol’d’s theorem applied to swirling recirculating flows 
To place this section in context, consider first Rayleigh’s stability theorems. Here we 

are considering axisymmetric rather than two-dimensional perturbations and so 
Rayleigh’s inflexion-point theorem is no longer relevant but must be replaced by his 
circulation theorem. This tells us that, for flows in which up = 0, a necessary and 
sufficient condition for stability is that Rayleigh’s discriminant, 

1 d r ’  
@(Y) = -- 

r3 dr 

is positive everywhere in the field of flow. This is consistent with (4.2) which gives 
PE, = @V(&r)’, confirming that energy may be transferred from the base flow to the 
perturbation if @ < 0. In fact, we may generalize Rayleigh’s criterion to Euler flows of 
the form (0, ue(r), u,(Y)). Here Rayleigh’s circulation theorem again dictates stability 
(see Chandrasekhar 1961) with u, playing no role. 

Now flows in which up is non-zero inevitably contain regions where r decreases with 
radius. By analogy with (4.2) we might expect that we can then make 6’E, < 0 by 
locally perturbing the flow. In fact, this turns out to be substantially correct. It is 
tempting, therefore, to conclude that all such flows are unstable. However, there are 
two problems with this argument. Firstly, a local perturbation of the vortex lines also 
perturbs Ep, and it is the net change in energy which is important, not just 6’E,. 
Secondly, an unstable oscillation takes a finite time to grow, and could conceivably be 
swept back and forth between ‘stable’ and ‘unstable’ regions of the flow, its amplitude 
alternatively increasing and decreasing. 

We might hope to resolve these questions with a normal mode analysis, which is 
based on linearized evolution equations for the perturbation. Before embarking on a 
global approach, let us see what the linearized equations of motion tell us. Suppose we 
let the perturbations in r and 11. be 6r and $, and introduce the related variable 

y = w/ry$) - 4. (8.1) 
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In addition, it is useful to generalize definition (7.4) of g to include swirl: 

d 
g = -[rr’($)]-r2~”($). 

d$ 

The angular momentum equation (6.2) can be linearized to give 

where D/Df is the convective derivative based on the velocity of the steady Euler flow. 
Equation (8.3) relates perturbations in the azimuthal and poloidal velocities, and we 
shall make use of this expression later. The transport equation for wo/r  gives a second 
relationship between y and q5 : 

We could, in principle, eliminate q5 between (8.3) and (8.4) by differentiating (8.4) with 
respect to time. However, the resulting expression is too complex to allow normal 
modes to be identified for all but the most trivial of flows. One of the few examples 
where this does work is the unbounded flow (0, ue(r), u,(r)). In this case normal modes 
may be found in the form of conventional standing or travelling waves (see 
Chandrasekhar 1961). In more complex cases, however, perhaps the best we can do is 
adopt a global approach. 

Let us now apply Arnol’d’s theorem to this flow. Using (2.3) and (2.4) we may 
calculate the changes in u arising from a perturbation of the vortex lines. It is natural 
to express the results in terms of perturbations in r a n d  wo/r ,  and it is readily confirmed 
that 

61r= -qp.vr, (8.5) 

6 2 r  = -;qp. v(sir), (8.6) 

6 Iwol r  = ~ p . V ( r e / ~ ) - t l p . V ( ~ e / ~ ) ,  (8.7) 

(8.8) 

Here $* is the streamfunction for qp., and is chosen to ensure that 6lu, is solenoidal. 
Note that r is materially advected in this perturbation, which is to be expected as r 
is the streamfunction for wp. The second variation in E, is 

= (V, /r)  vr- (wg/r) V$* + Vq51. 

which, using the identity 

r2V.[r-2r(q.vr)qp] = (q.~r)~+rq.v(q.VT)-(r,/r)q.V(r~) 

simplifies to 

Turning our attention to the poloidal component of velocity we have 

(8.10) 

1 PEP = Iv [ ( 6 l ~ , ) ~  + 2up - 62up] d V 
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and on substituting for Pup we find (see Appendix A)? 

Inspection of (8.10) and (8.1 1) shows that the only possibility of satisfying Arnol'd's 
criterion is to look for flows where E is a minimum (6'E > 0). This follows from 
selecting qp = 0 but qs + 0, which gives 

6'E = ;Iv (6luP)' dV > 0. 

As a simple example, consider the swirl-only flow where r = T(r) and up = 0. Then 

1 
6'E0 = Iv @$ d V, 

6'EP = 3 lv ( 6 ' ~ ~ ) '  d V 
1 

This is entirely consistent with Rayleigh's circulation theorem. If d, < 0 at any point, 
we may ensure 6'E < 0 by putting qe = 0 (so that P E P  = 0) and then concentrating qr 
in the region of negative @. In the more general case, where @ =l 0, our intuition that 
6'E0 is controlled by the sign of Rayleigh's discriminant is confirmed by (8.10). We may 
prove this as follows. Suppose that we choose qp to be a local rotation in the (r,z)-  
plane, applied over a very small area centred on (ro,zo). Then 

However, if qp represents a local rotation, then qp. T~ will be an odd function in (r - yo) 
and (z-zo) .  In this case the second integral vanishes, and we are left with a result 
reminiscent of (4.2) : 

6'E0 = Jv 7; d V. (8.12) 

This confirms that Rayleigh's discriminant controls the sign of PE,, even when 
recirculation is present. 

There is, perhaps, a more useful form of 6'E. If we define e and y through the 
expressions 

E = -q.o@ = 6lr/r'(@), E = 0 on S, (8.1 3 a) 

y = €-&I@ = c - 4 ,  y = O  on S,  (8.13 b) 

then we can rearrange (8.11) in the form (see Appendix A) 

6'E = 5 Iv [(Vy)'] r-' d V-- [(Ve)' -ge2] r-' d V. (8.14) 

Here, we are excluding flows where r is constant over a finite region, such as isolated 
vortex hoops, and also swirl-only flows (where up = 0) since in such cases g is 
undefined. Note also that e and y may be varied independently within the class of 
'kinematically admissible ' functions. This is because e depends solely on qp, whereas 

t A copy of Appendix A is available from the author or the Editorial Office. 

Iv 
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#, and hence y, depends on both qp and qo through (8.7). Of course, within the smaller 
class of 'dynamically accessible' functions, E and y are instantaneously linked by the 
linearized evolution equation (8.3). This gives 

(8.15) 

Here u is the velocity of the steady Euler flow. It is evident from (8.14) that all swirling 
recirculating flows are potentially unstable to the extent that they fail to meet Arnol'd's 
criterion. This is true whatever the sign of g .  We can always make 6'E negative by 
choosing y = 0 and giving E a short lengthscale so that the second term in (8.14) 
dominates. If we restrict attention to the smaller class of dynamically accessible 
functions it may be possible that 6'E is positive definite for certain functions, g .  (If this 
is so, then it seems that large positive values of g promote stability while negative 
values of g promote instability.) However, as far as Arnol'd's theorem is concerned, all 
swirling recirculating flows are potentially unstable. 

We may illustrate these conclusions with two simple example. Perhaps the simplest, 
non-trivial example of a swirling flow is the Beltrami flow o = au. As discussed in $6, 
this has the form r = a$, H = constant, and g = a2. Here a is an eigenvalue of 

V",+a'$=O, $ = 0  on S,  (8.16) 

a€ 
-+u.vy = 0. 
at 

Equation (8.14) then gives the second variation in E as 

[(Vy)']r-'dV-- [(VE)' - a2e2] r-' dV (8.17) 

From (7.1 1 a) and (7.1 1 b) it is clear that both integrals above are positive definite. 
Clearly, such flows are potentially unstable to modes where 8 9 y. When the flow is 
confined to the cylinder 0 ,< z ,< 1, r d R, equation (8.16) gives 

$ = ArJ,(G, r / R )  sin (m.nz/l), a' = (6,/R)' + (m.n/l)'. 

Here 6, is the nth zero of J,(x). In cases where 1 % R (and m = 1) our 'potential 
instability' translates into a real instability. In particular, the central region of the flow, 
near z - $1, is of the form (0, uo(r), uz(r)) and so the flow is prone to unstable standing 
waves of the form discussed earlier. Such waves will initiate in regions where @ < 0 and 
have ample time to develop since the recirculation time, 7 - Rl/rmaz,  is much greater 
than the growth time, T - R'/rmaz. 

Another well-known example of a confined swirling flow is Moffatt's (1969) 'vorton' 
flow. This is a generalization of Hill's spherical vortex. Here the vorticity is confined 
to a sphere of radius R with r= a$ and H'($) = A. The rotational flow within the 
sphere can be matched to an external transverse flow which is uniform at infinity. The 
parameters M: and h may be varied independently to produce a family of such flows. In 
all cases g = a' so that 6'E is again given by (8.17), indicating potential instability to 
modes with E 9 y. 

We conclude this section by showing that an alternative criterion, equivalent to 
(8.14), may be derived by a more direct route. The approach is essentially a 
generalization of Arnol'd's functional (2.10). As before we must assume P($) is non- 
zero everywhere in the Euler flow. Consider the functional 

(8.18) 
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where Y and r, are the streamfunction and angular momentum of an unsteady flow, 
and SZ, is the corresponding vorticity, VZ, Y = - rs2,. The last two terms in the integral, 
H(T,), and @(TT), are functions of I', which are chosen in a particular way. 21.(rT) is the 
inverse function of r,($), the angular momentum distribution of some steady Euler 
flow which is under investigation, and H ( r J  is the Bernoulli function of the same Euler 
flow. Conservation of energy, in conjunction with (6.9), shows that A(Y,I 'J is 
conserved by any inviscid flow. Now suppose that the unsteady flow (Y, r,) is close to 
the Euler flow (@,To), so that 

Y=II.+$, $<$, 
r, = r,+sr, tir 4 r,. 

It is readily shown that P A  = 0, while the second variation in A is given by an 
expression identical to (8.14), (see Appendix B);? 

6 2 ~  = A J [ge2 - ( V E ) ~  + (Vy)'] r-2 dV 
2 v  

(8.19) 

Here E and y are defined as in (8.13a) and (8.13b):e = GI'/Ti($) and y = e-4. Now 
A is conserved by the flow, so a2A is also conserved in the linear approximation. 
Following the arguments in $2, stability is ensured if P A  can be bounded away from 
zero, for all E and y. A steady flow isformally stable if it possesses an integral invariant 
which is stationary, and whose second variation is positive or negative definite. Formal 
stability is a necessary prerequisite to nonlinear stability and, as we have already seen, 
implies linear stability. Consequently, as with a two-dimensional flow, we can derive 
the same stability criterion by two different routes. In both the axisymmetric and two- 
dimensional cases, the use of an integral invariant to establish formal stability is the 
more direct approach. However, the method of perturbing the vortex lines has the 
advantage of generality, in that we do not have to look for a new invariant for each 
class of flow. 

The fact that all swirling recirculating flows fail to meet Arnol'd's criterion is, 
perhaps, just the first indication that all such flows are unstable. Certainly, the existence 
of regions where 0 c 0 strongly suggests some kind of centrifugal instability. However, 
we have already seen that one must be wary of implying instability from a failure to 
satisfy Arnol'd's criterion. Since normal mode analysis is impractical in most cases, we 
are left with relaxation methods as one means of resolving this issue. 

9. Relaxation methods for swirling recirculating flow 
There are two established relaxation methods at our disposal: the modified dynamics 

of Vallis et al. and magnetic relaxation. We shall briefly discuss each. Davidson (1993) 
has already examined the application of modified dynamics to swirling flow. The 
simplest embodiment of the scheme is to define 

fi = u + A a q a t  

and then 'modified dynamics' replace (6.2) and (6.3) by 

D>r/Dt = 0, 

"(3) Dt r = v .  [;4] 

t A copy of Appendix B is available from the author or the Editorial Office. 
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Here D/Dt is the convective derivative based on ri. Note that, as in advection of the 
vortex lines, angular momentum is a materially conserved quantity. It follows that we 
may impose a lower bound on E using (6.13). Moreover, this scheme monotonically 
reduces energy (for h > 0) according to 

&(t) = - A  (au,/at)2dV, 

while preserving the integral invariants given by (6.9). This includes the signature 
functions (6.10) and (6.11). Consequently, provided we choose h > 0, any initial 
condition is guaranteed to evolve to a stable steady Euler flow. Moreover, conservation 
of the signature functions might guarantee non-trivial solutions,. However, Davidson 
(1993) has speculated that such a scheme will minimize E through a radial stratification 
of the angular momentum, with all the azimuthal vorticity pushed to the boundaries. 
This simultaneously minimizes both E, and Ep. Trivial solutions might then be 
expected. Attempts to clarify this by numerical experiments were plagued by the 
growth of singularities in u. In fact, no stable solutions were computed. 

One might hope that magnetic relaxation, being based on a real physical process, 
would be better behaved as a relaxation procedure. However, the Euler flows it 
produces need not be stable. In fact, we have already seen that the swirl-only flow 
(0, us(r), 0) produced by axisymmetric relaxation is unstable by Rayleigh's circulation 
criterion. Physically, this reflects the tendency of flux tubes to lose energy by 
contraction, whereas swirling vortex hoops release energy by centrifuging themselves 
radially outward. More generally, we might anticipate that all swirling recirculating 
flows produced by magnetic relaxation are unstable. We may demonstrate this as 
follows. If we perturb the u-lines of an axisymmetric Euler flow, (2.3) and (2.4) give 

s, 

As before, we use d rather than 6 to indicate that the streamlines are being perturbed. 
The first and most important point to note is that r is no longer conserved in this 
perturbation. Rather, it is $ which is materially advected. It is readily confirmed that 
dlE = 0, as would be expected from the magnetostatic equilibrium. This also follows 
from Hamilton's principle, since (9.1) and (9.3) ensure that the three-dimensional 
particle trajectories have the same transit time before and after the perturbation is 
applied. In line with the notation of 97, it is convenient to introduce 

#=-q.V$, q5=0 on S. (9.4) 

We may then show (see Appendix C),t 

- V r I 2  r-' d V. 
d2E = ;Iv [(Vq5)2-g#2] r-"dV+ZIv 1 [d'T+qp 

(9.5) 

Now an Euler flow produced by magnetic relaxation will have d2E > 0. Moreover, the 
second integral in (9.5) is a function of both q, and qp, while the first is only a function 

7 A copy of Appendix C is available from the author or the Editorial Office. 
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of qp.  It follows that magnetic relaxation will give 

f /v [(V$)z -g$2] r-' d V > 0, 

flows in which, for all $, 

4 = -q .V$.  (9 * 6 )  

One example of a flow which satisfies this is the Beltrami flow discussed in $ 8 .  
Interestingly, (9.6) has precisely the same form as (7.11a),  which was derived for 
magnetic fields and Euler flows without an azimuthal component. The only difference 
is that we have generalized the definition of g to include ug (or Be). It follows that the 
criterion for axisymmetric stability of the magnetostatic equilibrium (BT, 0, B,) is 
precisely the same as for (Br, B,, B,), but withg extended in definition from (7.4) to (8.2).  
More importantly, expression (9.6) is precisely the opposite to Arnol'd's stability 
criterion (8.14). This requires that, for all E ,  

[(V~)~-gge']r-'dI/< 0, E = -q .V$.  (9.7) Y-" 
Clearly, those modes which represent an increase in the energy of the magnetostatic 
equilibrium constitute a decrease in the kinetic energy of the corresponding Euler flow. 
Consequently, as expected on physical grounds, magnetic relaxation will generally 
produce unstable Euler flows. The key reason is that angular momentum is not 
conserved during a perturbation of the u-lines. 

It would appear, therefore, that established relaxation techniques offer little help in 
finding stable swirling Euler flows. The modified dynamics of Vallis et al. are prone to 
numerical difficulties while magnetic relaxation hunts out the unstable flows. Perhaps 
this is just one more manifestation of the fact that all such flows are unstable. 

10. The Routhian and marginal stability 
The analysis of swirling flows simplifies somewhat if we focus on marginally unstable 

modes. Let us make the tenuous assumption that stable basic flows do indeed exist for 
certain distributions of g. We know for other distributions of g swirling flows are 
unstable. A Beltrami flow in an elongated cylinder is one example. In this situation it 
seems probable that certain basic flows are marginally stable or unstable. Let us make 
the additional assumption that these marginal modes obey the principle of exchange of 
stability. That is, these unstable modes are not oscillatory, but rather set in as a 
secondary flow of fixed shape. (The real and imaginary parts of the complex wave 
frequency are both zero for these marginal modes.) We have no apriori justification of 
this assumption, but it is certainly a hallmark of non-dissipative flows with body forces 
such as BCnard convection and centrifugal instability in a swirl-only flow (see 
Chandrasekhar 1961, and Drazin & Reid 1981). We now concern ourselves exclusively 
with basic flows which are close to, but not at, marginal stability, and we focus on the 
(almost) marginal modes. In this case the magnitude of the complex wave frequency is 
much less than the smallest characteristic timescale of the basic flow. Equation (8.15) 
then gives y < E ,  so that W z I"($) $. For these flows and modes we may develop 
a special variational approach which is essentially a hybrid procedure, retaining aspects 
of magnetic relaxation (conservation of $) and of 'modified dynamics ' (conservation 
of 0. In many ways this can be traced back to Rayleigh's original work on stability 
of swirl-only flow. 

Rayleigh's first arguments were based on the idea that the centrifugal force in a swirl- 
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only flow may be regarded as an external body force applied to the (incipient) poloidal 
flow. The details are given in, for example, Rayleigh (1916). In brief, attention is 
focused on a single fluid particle and it is assumed that this conserves its angular 
momentum during any perturbation. The centrifugal force, 15; = P/r3, is then 
conservative with a potential of P/2r2.  For swirl-only flows each fluid particle may be 
regarded as being in a state of static equilibrium and possessing a potential energy of 
iu;. Stability then corresponds to this potential energy being a minimum. In this way, 
Rayleigh showed that stability requires that EB is a minimum under perturbations 
which conserve r. His celebrated circulation theorem follows. This is essentially 
Routh’s procedure for investigating oscillations about a state of steady motion 
(Goldstein 1980). 

Consider a system with a finite number of degrees of freedom. Routh’s procedure in 
Lagrangian dynamics is frequently used when such sys tems possess certain types of 
symmetry. In particular, if one or more generalized coordinates, q, do not appear in the 
Lagrangian, L, then one can introduce a modified Lagrangian, called the Routhian, 
defined by 

Here qi are the ‘ignorable coordinates’ which do not appear in L, pi  are the 
corresponding generalized momenta, which are constants of the motion, and qi 
represents a Lagrangian time derivative. Provided R is written in such a way that qi 
does not appear explicitly, then the Routhian satisfies Lagrange’s equation for the non- 
ignorable coordinates. (Here we have used Goldstein’s 1980 convention for defining R. 
Some authors define R to be the negative of the above.) Lamb (1932) has used the 
Routhian to study the motion of solids in liquids. 

Consider now an individual fluid particle in a steady flow. It is subjected to the 
conservative body force F =  - V ( p / p ) .  For axisymmetric flows 8 is an ignorable 
coordinate, so the corresponding generalized momentum, I‘, is conserved. The 
Routhian for a fluid particle is then 

If 8 is now eliminated from R, we obtain, 

R = C p i q i - L ,  (10.1) 

R = re -L  = r4 - ( ;uz -p /p ) .  

(10.2) 

Provided r is treated as a constant, R will satisfy Langrange’s equations written in 
terms of the non-ignorable coordinates, r and 2. It follows that we may apply 
Hamilton’s principle to the particle in the ( r ,  2)-plane. We have, in effect, reduced the 
problem to a strictly two-dimensional one. Note that, as far as the poloidal motion is 
concerned, the kinetic energy of the swirl now appears as the potential energy of a body 
force, supplementing p / p .  This is essentially the approach taken by Rayleigh and we 
might anticipate that any generalization of Rayleigh’s argument would involve R being 
a minimum. Hamilton’s principle now tells us that, for any one fluid particle, the action 
integral of R around a closed streamline, 

I = f $ R d t ,  

will be stationary with respect to perturbations of that particle’s trajectory. We merely 
have to ensure that the perturbed trajectories do not change the recirculation time. 
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(Note that here we are concerned only with the projection of a particle's trajectory in 
the ( r ,  z)-plane.) Following the arguments of 0 5, the pressure term may be dropped 
from R since, as a force of constraint, it does no net work. We now divide the flow field 
up into elemental streamtubes (or streamsurfaces), 6$, and add the action integral 
from each. This gives 

(10.3) 

Now suppose that we perturb an Euler flow by advecting the $-lines and r-lines. This 
is a hybrid procedure, retaining certain characteristics of both magnetic relaxation and 
' modified dynamics' ; $ and r a r e  perturbed by a (poloidal) virtual displacement qp in 
accordance with (2.1) and (2.2). Introducing the symbol A to represent this 
perturbation, we have 

A'$ = - q *  V$, A2$ = -+q* V(A'$), (10.4) 

A ' r =  --q-Vr, A 2 r =  -+q.V(A'r). (10.5) 

Notice that these perturbations give A 1 r  = r'(@) A'$, so that we are restricting 
ourselves to marginal modes in flows close to marginal stability. Now under advection 
of the $-lines, the signature function V~ is conserved and so, therefore, is the 
recirculation time given by (6.8). As far as each fluid particle is concerned it finds itself 
on a new trajectory with the same angular momentum and the same recirculation time. 
It follows that each action integral in (10.3) will be stationary, and consequently we can 
introduce a new integral 

R = - [ ~ 2 - ( V $ ) 2 ] r - 2 d V =  E,-E, (10.6) 

which will be stationary under the perturbations defined by (10.4) and (10.5). As far as 
the poloidal motion is concerned, this represents the difference between the potential 
energy of the centrifugal force and the kinetic energy of up. It seems appropriate to 
refer to this as the Routhian of the flow. For swirl-only flows Rayleigh's criterion 
requires R to be a minimum for stability. More generally we would expect that a 
minimum potential energy, and hence a minimum R, would correspond to stability. 
For brevity, let us now write, $ = A'$. Noting that 

TA'T- vll.. v$ = - r2Vs [ ($ /r2)  v$ + Hq] 

: L 

we can confirm that R is indeed stationary: 

A - [ T A T -  v$- v$] r-' d V = 0. 
lR - s, 

The second variation in R is 

A2R = - [(A'r)2 + 2 r A 2 r -  (V$)2 - 2V$- V(A'@)] r-2 d V.  
2 v  ' J  

We are interested in establishing the conditions under which A2R > 0. Noting that 

 AT+ ( A i r y  = $2 [(ry$)y + rry@)] - rry$) 1. v$ 

-2V$. V(A2@) = r2V- [r-'(q-V$) V$- $H'($) q] -r2H"($) $'+ I'r'($) tp V$ 

and 
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it is readily confirmed that A2R is given by 

A2R = -iJv[(Vq5)2-gq52]rp2dV, q5 = -q.V$. (10.7) 

Let us compare this with the second variation in E under advection of the vortex lines. 
Equation (8.14) tells us that, for flows close to marginal stability (y  4 e),  

(10.8) 

Perturbing the u-lines, on the other hand, results in 

d2E=fJv[(VQ)2-g#2]r-2ddV, q5 =-q.V$. (10.9) 

Clearly, for flows and modes close to marginal stability we have A2R = s2E = -d2E. 
Now we know that stable swirling flows exhibit ti2E > 0. Thus, as anticipated, a 
sufficient condition for the stability of these weakly stable or unstable flows is that R 
is a minimum. This is essentially a generalization of Rayleigh’s original analysis. 

Of course the problem with (10.7) is that we cannot bound A2R from below, so that 
within the class of kinematically admissible functions, q5, the quantity A2R is always 
indefinite in sign or else (as in a Beltrami flow) negative. Perhaps this is just yet another 
manifestation of the fact that all such flows are unstable. 

11. Discussion and conclusions 
The content of this paper falls broadly into two parts: two-dimensional flows and 

swirling flows. In two dimensions Mestel’s (1989) work provides the bridge between 
Arnol’d’s stability criterion and magnetic relaxation. The fact that, in two dimensions, 
magnetic relaxation provides two-dimensionally stable Euler flows of elliptic topology 
is both surprising and useful. In particular, one would expect that magnetic relaxation, 
being based on a real physical process, should be better behaved than the modified 
dynamics of Vallis et al. Moreover, perturbing the streamlines provides a simpler 
mathematical test of stability than that furnished by perturbing the vortex lines. The 
equivalence of the flows generated by magnetic relaxation and modified dynamics is 
surprising, since swirling vortex hoops release energy by expanding, while flux tubes 
release energy by contracting. The key to this equivalence appear to lie in the constraint 
imposed by the two-dimensional signature function. 

The stationary nature of E under advection of the streamlines follows directly from 
Hamilton’s principle. This allows us to dispense with magnetic relaxation as an 
intermediary in an otherwise purely mechanical system. However, we have not 
explained why stability of the flow corresponds to the action integral being a minimum. 
There is, perhaps, scope for further study here. 

The analogy between two-dimensional flows and a loaded membrane is more 
complete than might be expected. Not only do the equilibrium configurations exactly 
correspond, but so does the stability of the two systems. Mestel’s functional is 
equivalent to the total energy of the membrane, while Arnol’d’s functional corresponds 
to the complementary energy. There are two potential uses of this analogy. Firstly, we 
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can avail ourselves of the extensive literature on the stability of elastic systems. 
Secondly, we can visualize the effects of advecting w or y2 on the energy E. 

We have seen that, by and large, the stability results for planar flows also apply to 
poloidal flows. Magnetic relaxation once again produces stable flows and the 
stationary nature of E under advection of the ~ - l ines  follows directly from Hamilton’s 
principle. A shaft placed in torsion provides an exact and comprehensive analogy to 
steady poloidal flows and their stability. 

Our attempt to extend the work to include swirl has largely produced negative 
results. We suspect, but cannot prove, that this reflects the fact that all swirling 
recirculating Euler flows are unstable. We have shown that, at the very least, they are 
all potentially unstable to the extent that they fail to meet Arnol’d’s criterion. 
Moreover, both relaxation procedures have failed to unearth any stable flows. 
Magnetic relaxation produces only unstable flows when swirl is present, and despite 
initial promise, the modified dynamics of Vallis et al. has been dogged by numerical 
difficulties. 

We have seen that, for marginal modes, the concept of the Routhian allows us to 
extend Rayleigh’s original ideas on centrifugal instability. This is essentially a hybrid 
procedure in which the angular momentum and the streamfunction were both 
perturbed. We would expect that stable flows correspond to the Routhian being 
positive definite. In fact, for all swirling, recirculating flows it is indefinite in sign or else 
negative, again suggesting instability. 
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